Indecomposability of cyclic codes

نویسندگان

  • Yoshimi Kashiwagi
  • Isao Kikumasa
چکیده

It is stated in Montpetit (1987) that cyclic codes are indecomposable, but it is not true in general. In fhis paper we will give a necessary and sufficient condition for a cyclic code to be indecomposable, using its generator polynomial. @ 1999 Elsevier Science B.V. All rights reserved

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some notes on the characterization of two dimensional skew cyclic codes

‎‎A natural generalization of two dimensional cyclic code ($T{TDC}$) is two dimensional skew cyclic code‎. ‎It is well-known that there is a correspondence between two dimensional skew cyclic codes and left ideals of the quotient ring $R_n:=F[x,y;rho,theta]/_l$‎. ‎In this paper we characterize the left ideals of the ring $R_n$ with two methods and find the generator matrix for two dimensional s...

متن کامل

On Skew Cyclic Codes over a Finite Ring

In this paper, we classify the skew cyclic codes over Fp + vF_p + v^2F_p, where p is a prime number and v^3 = v. Each skew cyclic code is a F_p+vF_p+v^2F_p-submodule of the (F_p+vF_p+v^2F_p)[x;alpha], where v^3 = v and alpha(v) = -v. Also, we give an explicit forms for the generator of these codes. Moreover, an algorithm of encoding and decoding for these codes is presented.

متن کامل

Cyclic Orbit Codes with the Normalizer of a Singer Subgroup

An algebraic construction for constant dimension subspace codes is called orbit code. It arises as the orbits under the action of a subgroup of the general linear group on subspaces in an ambient space. In particular orbit codes of a Singer subgroup of the general linear group has investigated recently. In this paper, we consider the normalizer of a Singer subgroup of the general linear group a...

متن کامل

Indecomposable prefix codes and prime trees

In this paper we introduce a notion of divisibility and primality on k-ary trees and we nd a relation between indecomposable preex code and prime trees. This relation allows to work on trees instead than directly on preex codes. In this way we can prove a density theorem for indecomposable preex codes and we can give an algorithm to test the indecomposability of a maximal preex code.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Discrete Mathematics

دوره 196  شماره 

صفحات  -

تاریخ انتشار 1999